REST API¶
This document aims to provide developers with a high-level overview of what can be accomplished through the Konfuzio API v3. For a more thorough description of the available endpoints and their parameters and response, we invite you to browse our Swagger documentation, which also provides an OpenAPI specification that can be used to generate language-specific API clients.
Table of Contents
General Information¶
The Konfuzio API v3 follows REST conventions and principles. Unless specified otherwise, all endpoints accept both
JSON-encoded and form-encoded request bodies, according to the specified content type. All endpoints return JSON-encoded
responses. We use standard HTTP verbs (GET
, POST
, PUT
, PATCH
, DELETE
) for actions, and return standard HTTP
response codes based on the success or failure of the request.
Authentication¶
Most of our endpoints, excluding those that deal with public documents, strictly require authentication. We support three types of authentication.
Basic HTTP authentication¶
Your Konfuzio username (email) and password are sent with every request as HTTP headers in the
format Authorization: Basic <string>
, where <string>
is a Base64-encoded string in the
format <username>:<password>
(this is usually done automatically by the HTTP client).
Warning
While this approach doesn’t require additional setup and is useful for testing in the Swagger page, it is discouraged for serious/automated use, since it usually involves storing these credentials in plain text on the client side.
Single sign-on (SSO) authentication¶
SSO authentication is available through KeyCloak, which is an open source identity and access management solution. This functionality is only offered to our on-prem users. Further documentation regarding our KeyCloak integration can be found on our on-prem documentation page.
Token authentication¶
You send a POST
request with your Konfuzio username (email) and password to our authentication endpoint, which
returns a token string that you can use in lieu of your actual credentials for subsequent requests, providing it with an
HTTP header in the format Authorization: Token <token>
.
This token doesn’t currently expire, so you can use indefinitely, but you can delete it (and regenerated) via the authentication DELETE endpoint.
Note
This is the authentication method you should use if you’re building an external service that consumes the Konfuzio API.
An example workflow would look like:
User registers to app.konfuzio.com with email “example@example.org” and password “examplepassword”.
A
POST
request is sent tohttps://app.konfuzio.com/v3/auth/
. The request is JSON-encoded with the following body:{"username": "example@example.org", "password": "examplepassword"}
.The endpoint returns a JSON-encoded request like
{"token": "bf20d992c0960876157b53745cdd86fad95e6ff4"}
.For any subsequent request, the user provides the HTTP header
Authorization: Token bf20d992c0960876157b53745cdd86fad95e6ff4
.
cURL example¶
To get a token:
curl --request POST \
--url https://app.konfuzio.com/api/v3/auth/ \
--header 'Content-Type: application/json' \
--data '{"username": "[email protected]", "password": "examplepassword"}'
To use the token:
curl --request GET \
--url https://app.konfuzio.com/api/v3/projects/ \
--header 'Authorization: Token bf20d992c0960876157b53745cdd86fad95e6ff4'
Python example¶
To get a token:
import requests
url = "https://app.konfuzio.com/api/v3/auth/"
payload = {
"username": "[email protected]",
"password": "examplepassword"
}
response = requests.post(url, json=payload)
print(response.json())
To use the token:
import requests
url = "https://app.konfuzio.com/api/v3/projects/"
headers = {
"Authorization": "Token bf20d992c0960876157b53745cdd86fad95e6ff4"
}
response = requests.get(url, headers=headers)
print(response.json())
Accessing and using the token via the Konfuzio SDK¶
To get an access token, simply run konfuzio_sdk init
in the terminal and enter your login credentials. The token will
be stored in the .env
file in your working directory. Then you are good to go and can use the SDK to access the API.
For more information on this and other information on what you can do with the SDK, see the SDK Get Started page.
Authenticating with a Token as a Query Parameter (Upcoming feature)¶
Note
Please open a support ticket <https://konfuzio.com/support>`_ if you would like to have early access to this feature.
Sometimes you might need to use one of our endpoints with a third party service that doesn’t allow you to specify certain types of information (like authentication tokens) in the request. In these cases, you can use a special method to authenticate your request using a token as a query parameter.
To do this, you’ll first need to generate an authentication token using the steps we provided earlier. Then, you can include the token in your request by adding it as a query parameter at the end of the URL.
Here’s an example of what that might look like:
http://app.konfuzio.com/api/v3/projects/3/export/all.csv?token=123456
Just replace 123456 with your own authentication token, and you’ll be able to use this method to authenticate your request.
Note
This functionality is offered as part of the Google-Sheet export function, as well as usable on any other csv importable software (SAP, Excel, etc).
Response codes¶
All endpoints return an HTTP code that indicates the success of the request. Following the standard, codes starting
with 2
(200
, 201
…) indicate success; codes starting with 4
(400
, 401
…) indicate failure on the client
side, with the response body containing more information about what failed; codes starting with 5
(500
, 502
…)
indicate failure on our side and are usually temporary (if they aren’t, please
contact us).
See also
The Swagger documentation provides a more detailed breakdown of which response codes are expected for each endpoint.
Pagination¶
All endpoints that list resources are paginated. Pagination is achieved by providing offset
and limit
as GET
parameters to the request. limit
is the maximum amount of items that should be returned, and offset
is the amount of
items that should be skipped from the beginning.
For example, if you wanted the first 50 items returned by an endpoint, you should pass ?limit=50
. If you wanted the
next 50 items, you should pass ?limit=50&offset=50
, and so on.
Paginated responses always have the same basic structure:
{
"count": 123,
"next": "http://api.example.org/accounts/?offset=400&limit=100",
"previous": "http://api.example.org/accounts/?offset=200&limit=100",
"results": [
...
]
}
count
is the total number of available items.next
is the API URL that should be called to fetch the next page of items based on the currentlimit
.previous
is the API URL that should be called to fetch the previous page of items based on the currentlimit
.results
is the actual list of returned items.
Filtering¶
All endpoints that list resources support some filtering, based on the resource being fetched. These filters are passed
as GET
parameters and can be combined.
Two filters that are usually available on all list endpoints are created_at_after
and created_at_before
, which
filters for items that have been created after or before the specified date. So you could
use ?created_at_before=2022-02-01&created_at_after=2021-12-01
to only return items that have been created between
December 1, 2021 and February 1, 2022 (specified dates excluded).
See also
For more filtering options, refer to the Swagger documentation for the endpoint that you want to filter.
Ordering¶
Most endpoints that list resources support ordering on some fields. The ordering is passed as a single GET
parameter
named ordering
with the field name that you want to order by as the value.
You can combine multiple ordering fields by separating them with a ,
. For example: ?ordering=project,created_at
.
You can specify that you want the ordering to be reversed by prefixing the field name with a -
. For
example: ?ordering=-created_at
.
See also
For a list of fields that can be used for ordering, refer to the Swagger documentation for the endpoint that you want to order.
Fields¶
Some endpoints allow you to override the default response schema and specify a subset of fields that you want to be
returned. You can specify the fields
GET
parameter with the field names separated by a ,
.
For example, you can specify ?fields=id,created_at
to only return the id
and created_at
fields in the response.
See also
Refer to the Swagger documentation for a specific endpoint to see if it supports using the fields parameter. When supported, any field in the response schema can be used in the fields parameter.
Coordinates and Bounding Boxes¶
There are three concepts related to coordinates and Bounding Boxes that are used throughout the API v3:
Bounding Boxes (or Bboxes). A Bbox is a rectangle representing a subset of a Document Page. It has the following properties:
x0
,xy
,y0
,y1
: the four points representing the coordinates of the rectangle on the Page.page_index
: the Page of the Document the Bbox refers too.
Spans. A Span, like the Bbox, is a rectangle representing a subset of a Document Page; unlike the Bbox, it also represents the text data contained inside the rectangle. So it has the same properties as the Bbox, but it adds more:
offset_string
(optional when user-provided): the text contained inside this Span. This can be manually set by the user if the text existing at the specified coordinates is wrong.offset_string_original
(read-only): the text that was originally present at the specified coordinates. This is usually the same asoffset_string
unless it has been changed manually. If the value ofoffset_string_original
differs from the value ofoffset_string
, the fieldcustom_offset_string
will be set totrue
.start_offset
,end_offset
(read-only): the start and end character of the text contained inside this Span, in relation to the Document’s text.
Character Bounding boxes (or char Bboxes). A char Bbox is a rectangle representing a single character on the Page of a Document. This is always returned by the Konfuzio server and cannot be set manually. It has the same properties as the Dbox, but it adds more:
text
(read-only): the single character contained by this Bbox.line_index
(read-only): the line the character is in, related to all the lines in the Document.
If the endpoint you’re working with uses a span
or bbox
field, refer to its Swagger schema and to the summary above
to understand which fields it needs.
Guides and How-Tos¶
These guides will teach you how to do common operations with the Konfuzio API. You can refer to the general information section above for a general overview of how the API works and to our Swagger documentation for a full list of all the available endpoints.
The example snippets use cURL, but you can easily convert them to your preferred language manually or using tools like cURL Converter.
The guides assume you already have a token that you will use in the headers of
every API call. If you’re copy-pasting the snippets, remember to replace YOUR_TOKEN
with the actual token value.
Set up a Project with Labels, Label Sets and Categories¶
This guide will walk you through the API-based initial setup of a Project with all the initial data you need to start uploading Documents and training the AI.
Create a Project¶
First you need to set up a Project. To do so, you will make a call to our Project creation endpoint:
curl --request POST \
--url https://app.konfuzio.com/api/v3/projects/ \
--header 'Content-Type: application/json' \
--header 'Authorization: Token YOUR_TOKEN' \
--data '{"name": "My Project"}'
name
is the only required parameter. You can check the endpoint documentation for more available options.
This call will return a JSON object that, among other properties, will show the id
of the created Project. Take note
of it, as you will need it in the next steps.
Create a Category¶
A Category is used to group Documents by type and can be associated to an extraction AI. For example, you might want to create a Category called “Invoice”. To do so, you will make a call to our category creation endpoint:
curl --request POST \
--url https://app.konfuzio.com/api/v3/categories/ \
--header 'Content-Type: application/json' \
--header 'Authorization: Token YOUR_TOKEN' \
--data '{"project": PROJECT_ID, "name": "Invoice"}'
name
and project
are the only required parameters. Remember to replace PROJECT_ID
with the actual id
that you
got from the previous step. You can check the endpoint documentation for more available options.
This call will return a JSON object that, among other properties, will show the id
of the created Category. Take note
of it, as you will need it in the next steps. You can retrieve a list of your created Categories by sending a GET
request to the same endpoint.
Create some Labels¶
Labels are used to label Annotations with their business context. In the case of our invoice Category, we might want to have Labels such as “amount” and “product”. For each Label, we need to make a different API request to our Label creation endpoint:
curl --request POST \
--url https://app.konfuzio.com/api/v3/labels/ \
--header 'Content-Type: application/json' \
--header 'Authorization: Token YOUR_TOKEN' \
--data '{"project": PROJECT_ID, "name": "Amount", "categories": [CATEGORY_ID]}'
curl --request POST \
--url https://app.konfuzio.com/api/v3/labels/ \
--header 'Content-Type: application/json' \
--header 'Authorization: Token YOUR_TOKEN' \
--data '{"project": PROJECT_ID, "name": "Product", "categories": [CATEGORY_ID]}'
name
and project
are the only required parameters, however we also want to associate these Labels to a Category.
Since Labels can be associated to multiple Categories, the categories
property is a list of integers. (We only have
one, so in this case it’s going to be a list with a single integer). Remember to replace PROJECT_ID
and CATEGORY_ID
with the actual values you got from the previous steps. You can check the endpoint documentation for more available
options.
These calls will return a JSON object that, among other properties, will show the id
of the created Labels. Take note
of it, as you will need it in the next steps. You can retrieve a list of your created Labels by sending a GET
request
to the same endpoint.
Create a Label Set¶
A Label Set is used to group Labels that make sense together. Sometimes these Labels might occur multiple times in a Document — in our “invoice” example, there’s going to be one set of “amount” and “product” for each line item we have in the invoice. We can call it “line item” and we can create it with an API request to our label set creation endpoint:
curl --request POST \
--url https://app.konfuzio.com/api/v3/label-sets/ \
--header 'Content-Type: application/json' \
--header 'Authorization: Token YOUR_TOKEN' \
--data '{"project": PROJECT_ID, "name": "Line Item", "has_multiple_sections": true, "categories": [CATEGORY_ID], "labels": [LABEL_IDS]}'
name
and project
are the only required parameters, however we also want to associate this Label Set to the Category
and Labels we created. Both categories
and labels
are lists of integers you need to fill with the actual ids of the
objects you created earlier. For example, if our category id
was 1
, and our label id
s were 2
and 3
, we would
need to change the data we send like this: "categories": [1], "labels": [2, 3]
. With has_multiple_sections
set
to true
, we also specify that this Label Set can be repeating, i.e. you can have multiple line items in a single
invoice.
Next steps¶
Your basic setup is done! You’re now ready to upload Documents and train the AI.
Upload a Document¶
After your initial Project setup, you can start uploading Documents. To upload a Document, you will make a call to our Document creation endpoint.
Note
Unlike most other endpoints, the Document creation endpoint only supports multipart/form-data requests (to support file uploading), so you won’t have to JSON-encode your request this time.
Uploading a Document to Konfuzio¶
This tutorial will guide you on how to upload a Document to the Konfuzio platform.
Before starting, note that there are three possible ways to create a project on Konfuzio:
Via the API (as shown in this tutorial)
Using the web interface (for more information, watch the video tutorial at help.konfuzio.com/quickstart/)
By accepting an invitation to a ready Project (in this case, no setup is necessary on your part)
After setting up your Project, you can start uploading Documents. Document uploading is accomplished by making a POST request to our Document creation endpoint. Unlike most endpoints, this one only supports multipart/form-data requests to accommodate file uploading, hence JSON-encoding your request is not necessary this time.
Synchronous Document Upload¶
This tutorial will guide you on how to perform a synchronous Document upload to Konfuzio. In this mode, the server will wait for the Document processing to finish before returning a response with the extracted data.
After setting up your Project, you can upload Documents. This is done by making a POST request to our Document creation endpoint. This endpoint only supports multipart/form-data requests to facilitate file uploading, so you don’t need to JSON-encode your request.
curl --request POST\
--url https://app.konfuzio.com/api/v3/documents/\
--header 'Content-Type: multipart/form-data'\
--header 'Authorization: Token YOUR_TOKEN'\
--form project=PROJECT_ID\
--form sync=true\
--form data_file='@LOCAL_FILE_NAME';type=application/pdf
Replace
YOUR_TOKEN
with your authorization token.PROJECT_ID
should be replaced with the ID of your Project.LOCAL_FILE_NAME
is the path to the file on your disk you wish to upload. Make sure to keep the@
in front of it.The
sync
parameter is set totrue
, which means the server will wait for the Document processing to finish before returning a response.
Note that this synchronous mode might take a long time for large Documents, so it’s recommended to set a high timeout for your request. After the upload, the API will return the extracted data from the Document.
Asynchronous Document Upload with Assignee Notification¶
In this tutorial, we will guide you through the process of asynchronously uploading a Document to Konfuzio. This method
is particularly beneficial when dealing with large Documents or Documents with many Pages. We will also discuss how you
can use the assignee
parameter to notify a specific user by email after the Document upload.
Here’s an example of an asynchronous Document upload request, which includes the assignee
parameter:
curl --request POST\
--url https://app.konfuzio.com/api/v3/documents/\
--header 'Content-Type: multipart/form-data'\
--header 'Authorization: Token YOUR_TOKEN'\
--form project=PROJECT_ID\
--form sync=false\
--form assignee=[email protected]\
--form data_file='@LOCAL_FILE_NAME';type=application/pdf`
In this request:
Replace
YOUR_TOKEN
with your authorization token.PROJECT_ID
should be replaced with the ID of your Project.CATEGORY_ID
is optional. If present, it must be the ID of a Category belonging to your Project. If this is not set, the app will try to automatically detect the Document category based on the available options.sync
is set to false for asynchronous processing. With this, the API will immediately return a response after the upload, confirming that the Document was received and is now queuing for extraction.callback_url
is optional. If provided, the Document details are sent to the specified URL via a POST request after the processing of the Document has been completed.assignee
is optional. If provided, it is the email of the user assigned to work on this Document, which must be a member of the Project you’re uploading the Document to.LOCAL_FILE_NAME
is the path to the existing file on your disk you wish to upload. Keep the@
in front of it.
Using the assignee
parameter allows you to assign a specific user to work on the uploaded Document. The assignee, who
must be a member of your Project, will receive an email notification once the Document is uploaded. This feature is
beneficial when specific Documents require attention from specific team members, as it automatically informs them about
the new task.
After the upload, you can use the Document retrieve endpoint to check if the Document has finished processing, and if so, retrieve the extracted data.
Document Upload by Disabling Automatic Categorization¶
This tutorial guides you on how to disable automatic categorization when uploading a Document to Konfuzio by specifying the category of the Document manually. This can be useful when you want to ensure that a Document is assigned to a specific Category, or when automatic categorization may not accurately categorize a Document due to its content or layout.
Once your Project is set up, you can upload Documents. This is done by making a POST request to our Document creation endpoint. This endpoint only supports multipart/form-data requests to facilitate file uploading, so you don’t need to JSON-encode your request.
In this sequence diagram, the first flow represents the process when a Document is uploaded without a Category. Konfuzio Server performs automatic categorization before processing the Document. A webhook is then sent to the Customer Software after processing.
The second flow represents the process when a Document is uploaded with a Category. Since the Category is already specified, Konfuzio Server skips the categorization step and directly processes the Document. After processing, a webhook is sent to the Customer Software.
Here’s an example of how to manually specify the Category of a Document:
curl --request POST\
--url https://app.konfuzio.com/api/v3/documents/\
--header 'Content-Type: multipart/form-data'\
--header 'Authorization: Token YOUR_TOKEN'\
--form project=PROJECT_ID\
--form category=CATEGORY_ID\
--form data_file='@LOCAL_FILE_NAME';type=application/pdf
Replace
YOUR_TOKEN
with your authorization token.PROJECT_ID
should be replaced with the ID of your Project.CATEGORY_ID
is the ID of a Category that belongs to your Project. By specifying this, you are bypassing Konfuzio’s automatic categorization process.LOCAL_FILE_NAME
is the path to the file on your disk you wish to upload. Make sure to keep the@
in front of it.
By manually specifying the Category of a Document, you ensure that the Document is categorized as you intend, without relying on automatic categorization. This can be helpful in situations where the content or layout of a Document might confuse the automatic categorization process. After the upload, the API will return the uploaded Document’s ID and its current status.
Asynchronous Document Processing with Webhook¶
This tutorial will guide you on how to use webhooks for asynchronous Document processing in Konfuzio.
Once your {p}roject is set up, you can upload Documents. This is done by making a POST request to our Document creation endpoint. This endpoint only supports multipart/form-data requests to accommodate file uploading, so you won’t have to JSON-encode your request.
Webhooks allow you to receive a POST request from Konfuzio once the processing of your Document is complete. This method is especially beneficial when dealing with large Documents or Documents with many Pages as it allows your application to continue working on other tasks while the Document processing takes place. Here’s an overview of the process:
In the sequence above, your software (Customer Software) sends a Document POST request to Konfuzio Server to upload a Document. Once the processing of the Document is complete, Konfuzio Server sends a webhook (a POST request) back to your software.
Note
The webhook is currently only sent when the document is processed successfully. If the processing fails, the webhook is not sent. If you don’t get a callback within 10 minutes of uploading a Document, use the Document retrieve endpoint to see the status of the Document.
Here is how you can include a callback URL in your Document upload request to use webhooks:
curl --request POST\
--url https://app.konfuzio.com/api/v3/documents/\
--header 'Content-Type: multipart/form-data'\
--header 'Authorization: Token YOUR_TOKEN'\
--form project=PROJECT_ID\
--form callback_url=https://callback.example.org\
--form data_file='@LOCAL_FILE_NAME';type=application/pdf`
In this request:
Replace
YOUR_TOKEN
with your authorization token.PROJECT_ID
should be replaced with the ID of your Project.callback_url
is the URL where the webhook should be sent once the Document is processed.LOCAL_FILE_NAME
is the path to the file on your disk you wish to upload. Keep the@
in front of it.
The callback_url
parameter is optional. If provided, Konfuzio will send the Document details to the specified URL
via a POST request after the Document has been processed. This means your application can continue working on other
tasks and only needs to handle the Document data once it’s ready.
This asynchronous approach is advantageous when dealing with Documents that contain many Pages or require a long processing time, as it doesn’t block your application while waiting for the response. Instead, your application is notified via the webhook once the data is ready.
Konfuzio will make the requests from one of the following IPs. Please make sure they are not blocked by your firewall: 142.132.235.94, 116.202.99.45, 162.55.173.88, 176.9.103.240, 167.235.249.252, 5.75.234.115, 168.119.108.13, 49.13.50.213, 138.201.119.223, 5.75.209.253
Create an Annotation¶
Annotations are automatically created by the extraction process when you upload a Document, but if some data is missing you can annotate it manually to train the AI model to recognize it.
Creating an Annotation via the API requires the client to provide the bounding box coordinates of the relevant text snippet, which is usually done in a friendly user interface like our SmartView (see below for other options). The Annotations create endpoint accepts requests that look like this:
curl --request POST \
--url https://app.konfuzio.com/api/v3/annotations/ \
--header 'Authorization: Token YOUR_TOKEN' \
--header 'Content-Type: application/json' \
--data '{
"document": DOCUMENT_ID,
"label": LABEL_ID,
"label_set_id": LABEL_SET_ID,
"is_correct": true,
"is_revised": true,
"span": [
{
"page_index": 0,
"x0": 59.52,
"x1": 84.42,
"y0": 708.31,
"y1": 718.31
}
]
}'
In this request:
You must specify either
annotation_set
orlabel_set
. Useannotation_set
if an Annotation Set already exists. You can find the list of existing Annotation Sets by using theGET
endpoint of the Document. Usinglabel_set
will create a new Annotation Set associated with that Label Set. You can only do this if the Label Set hashas_multiple_sections
set totrue
. (See the note below for some examples.)label
should use the correctLABEL_ID
for your Annotation.span
is a list of Spans.Other fields are optional.
As the span
identifies a position on the page, there are multiple ways to identify the correct one for the
Annotation you want to create:
The Document Bbox endpoint returns an object with all the characters from the Document with their coordinates. The characters can be identified by their offset (the keys in the object) and they can be easily converted in a list for the
span
attribute. You can also send a POST call to this endpoint with some coordinates to return a subset of the Document’s characters that is completely contained into the sent coordinates.The Document Page endpoint has an
entities
attribute that contains all the words from the Document with their coordinates. These can be easily converted in a list for thespan
attribute.The Document search endpoint takes a string as input and returns a list of all its occurrences in the Document. These can be fed directly to the
span
attribute.
Note
Annotation Sets are never created directly. When you create an Annotation, you can specify whether to re-use an existing Annotation Set, or to create a new one. You can refer to the following diagram to decide whether to use annotation_set or label_set in your request.
Create training data and train the AI¶
Once you have uploaded enough Documents and created enough Annotations, you can start training an extraction AI. You will need at least one Document in the “training” dataset for the Category you want to train, but more data is usually better (see our improving accuracy guide).
Then to train an AI you can simply call our Extraction AI create endpoint with the ID of the Category the training Documents belong to:
curl --request POST \
--url https://app.konfuzio.com/api/v3/extraction-ais/ \
--header 'Content-Type: application/json' \
--header 'Authorization: Token YOUR_TOKEN' \
--data '{"category": CATEGORY_ID}'
The training of the AI can take a while, depending on current server load and how large the training dataset is. You will receive an email once the process is complete; you can also poll the Extraction AI detail endpoint to see the real time status of the process. The newly trained Extraction AI will then automatically be used to extract machine-generated Annotations from newly uploaded Documents for that Category.
If you add new training/test Documents, or change existing ones, don’t forget to train a new Extraction AI, otherwise your modifications will not apply to the extraction process of new Documents. When training a new version of an AI, it will be automatically set as the active one only if its evaluation results are better than the previous AI’s.
Review a Document¶
When working on a Document, the ultimate goal is to mark it as “reviewed”, which means that all its Annotations have been revised and the information inside them is correct.
To clarify how reviewing works, let’s take a look at the statuses this data can go through:
Annotations created by an AI extraction are initially marked as Feedback Required.
They can be Accepted, which means that the information they contain is correct.
They can be Declined, in case the information is wrong.
Once an Annotation is Declined, or in case no Annotation was found for a specific Label, the Label (in the context of its Annotation Set) is considered Unfilled, and needs to be acted on.
The user can manually select the part of the Document where the Unfilled Label is actually present to create an Annotation that is Created by Human.
The user can signal that the Unfilled Label is Not Found in this Document by creating a Missing Annotation instance for this specific Label/Annotation Set combination.
This procedure will help the next Extraction AI training you create, as it will tell the system the where the information it extracted was correct and the points where it was not. Once there are no “Feedback Required” and “Unfilled” items, the Document can be marked as “reviewed”.
To retrieve the list of Annotations for a Document, you can use the Annotation list endpoint:
curl --request GET \
--url https://app.konfuzio.com/api/v3/annotations/?document=DOCUMENT_ID \
--header 'Authorization: Token YOUR_TOKEN'
A hierarchical list of Annotations in the context of Labels and Annotation Sets can also be found under the
annotation_sets
property of the Document detail endpoint:
curl --request GET \
--url https://app.konfuzio.com/api/v3/documents/DOCUMENT_ID/ \
--header 'Authorization: Token YOUR_TOKEN'
Note
The annotation_sets property contains both existing Annotation Sets and “potential” ones, i.e. Label Sets from the Document’s Category which do not have a corresponding Annotation Set on the Document yet. These are easy to see because they don’t have any Annotation and their id is null.
Whichever method you choose, you should be able to retrieve an ID for the Annotation(s) you want to revise. Unrevised
Annotations are easily filterable in the list because they have the properties "revised": false
and
"is_correct": false
. (See the
Annotations documentation for
more information.)
To mark an Annotation as accepted, you can then send a request like this one to the Annotation edit endpoint:
curl --request PATCH \
--url https://app.konfuzio.com/api/v3/annotations/ANNOTATION_ID/ \
--header 'Content-Type: application/json' \
--header 'Authorization: Token YOUR_TOKEN' \
--data '{"revised": true, "is_correct": true}'
Conversely, to mark it as declined you should send a request like this one:
curl --request PATCH \
--url https://app.konfuzio.com/api/v3/annotations/ANNOTATION_ID/ \
--header 'Content-Type: application/json' \
--header 'Authorization: Token YOUR_TOKEN' \
--data '{"revised": true, "is_correct": false}'
If a specific Label does not exist at all in a Document, you can use the Missing Annotation endpoint to tell the system about it:
curl --request POST \
--url https://app.konfuzio.com/api/v3/missing-annotations/ \
--header 'Content-Type: application/json' \
--header 'Authorization: Token YOUR_TOKEN' \
--data '{"document": DOCUMENT_ID, "label": LABEL_ID, "label_set": LABEL_SET_ID}'
You can also see a list of all Missing Annotations that have been created for a document:
curl --request GET \
--url https://app.konfuzio.com/api/v3/missing-annotations/?document=DOCUMENT_ID \
--header 'Authorization: Token YOUR_TOKEN'
Once there are no Annotations left to be reviewed, and there are no Unfilled Labels, you can mark the Document as “reviewed”:
curl --request PATCH \
--url https://app.konfuzio.com/api/v3/documents/DOCUMENT_ID/ \
--header 'Content-Type: application/json' \
--header 'Authorization: Token YOUR_TOKEN' \
--data '{"is_reviewed": true}'
Post-process a Document: split, rotate and sort Pages¶
We offer a postprocess endpoint that allows you to change uploaded Documents in three ways, which can be combined into a single API request:
Split: divide a Document into two or more Documents, with the same total number of Pages. Note: you cannot join Documents that have been split, you will have to upload a new Document.
Rotate: change the orientation of one or more Pages in a Document, in multiple of 90 degrees.
Sort: change the order of the Pages in a Document.
The endpoint accepts a list of objects, each one representing a single output Document. (If you’re not using the
splitting functionality, this list should only contain one Document). The pages
property you send determines the
content of the Document.
Document splitting suggestions¶
Note
Contact us to enable this functionality.
The training data that was previously created can also be used to train a Splitting AI to automatically propose splitting suggestions for uploaded documents.
To get started, you should “Enable Document splitting” in your Project settings; then, you can use our Splitting AI endpoints to create a new Splitting AI, similar to how you train an Extraction AI.
Once this is done, when uploading a Document, you will notice an additional proposed_split
field in the response.
This field contains a list of different Documents the AI thinks your original Document should be split into; each one
includes a Category, if it was found, and the list of Page IDs that should be part of that new Document. You can feed
this list, either as it is or after editing it and changing details, into the
postprocess endpoint to actualize
the AI’s suggestions. You can also pass a list with one Document and all the page IDs to effectively reject the
suggestions and proceed with the original Document.
Note
Once Document Splitting is enabled for a Project, newly uploaded Documents where splitting is detected will stay in the “Waiting for splitting confirmation” (41) status until the user takes action on the AI’s suggestions. After that, extraction will run as usual on the resulting Documents.
After being split, the new Documents will keep a reference to the original “Document Set” via the document_set
property. Querying the Document Sets endpoint with that ID will
return all the existing Documents derived from the same original Document.
Download the OCR version of an uploaded Document¶
After uploading a Document, the Konfuzio server also creates a PDF OCR version of it with indexed and
selectable text. This version is also used to generate images for each page for our SmartView functionality. If you
need it, you can download this OCR version of the Document: the file_url
property of the
document retrieve endpoint contains the URL to it
(relative to the Konfuzio installation: on the main server, /doc/show/123/
would become
https://app.konfuzio.com/doc/show/123/
); to access it, you need to be authenticated, so you would need a request like
this:
curl --request GET \
--url https://app.konfuzio.com/doc/show/DOCUMENT_ID/ \
--header 'Authorization: Token YOUR_TOKEN' \
--remote-name --remote-header-name
This will save the file in the current directory.